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Abstract

Most commercial multicomputers use space�slicing
schemes in which each scheduling decision has an un�
known impact on the future� should a job be sched�
uled� risking that it will block other larger jobs later�
or should the processors be left idle for now in an�
ticipation of future arrivals� This dilemma is solved
by using gang scheduling� because then the impact of
each decision is limited to its time slice� and future
arrivals can be accommodated in other time slices�
This added �exibility is shown to improve overall sys�
tem utilization and responsiveness� Empirical evi�
dence from using gang scheduling on a Cray T�D in�
stalled at Lawrence Livermore National Lab corrobo�
rates these results� and shows conclusively that gang
scheduling can be very e�ective with current technol�
ogy�

� Introduction

As parallel computers become more popular� there
is a growing need for good schedulers that will man�
age these expensive shared resources� And indeed�
many scheduling schemes have been designed� evalu�
ated� and implemented in recent years 	�� ��
�
Many papers investigate scheduling schemes from

a system point of view� asking what the system can
do to improve utilization and response time� but dis�
regarding the e�ect on the user� As a result they
sometimes advocate solutions that require users to
depart from common practice� e�g� to write applica�
tions in a style that supports dynamic partitioning
�i�e� the allocation may change at runtime
 	��� ��
�
rather than the prevalent SPMD style�
We take a di�erent approach� and ask what the

system can do given the constraint that users require
jobs to execute on a �xed number of processors �as in
SPMD
� Within this framework� we compare variable
partitioning� possibly with reordering of the jobs in
the queue� with gang scheduling� We show that al�
though gang scheduling su�ers from more overhead
than variable partitioning� it can lead to signi�cant
improvements due to its added �exibility� Indeed�
gang scheduling can actually give better service �re�
duced response time
 and improved utilization� so us�
ing it leads to a win�win situation relative to variable
partitioning�

The results agree with actual experience on the
LLNL Cray T�D� which employs a home�grown gang
scheduler 	��� ��
 �the original system software uses
variable partitioning
� When this scheduler was
ported to the new Cray machine� utilization nearly
doubled from ����� to ����� on average� Additional
tuning has led to weekly utilizations that top ����

� Approaches to Scheduling

Jobs of Given Size

The schedulers of most commercial parallel systems
use variable partitioning� The user speci�es the num�
ber of processors to use at the time of submitting the
job� The scheduler than carves out a partition of
the required size� and dedicates it to the job for the
duration of its execution� If the required number of
processors is not available� the job is either rejected or
queued� In most systems a time limit is also imposed�
and if the job exceeds it it is killed�

The problem with this scheme is that scheduling
decisions have a potentially large� persistent� and un�
predictable impact on the future� Speci�cally� when a
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Figure �� Example of the problems faced by variable partitioning�

new job arrives� the system is faced with the following
dilemma�

� if the new job can be accommodated� then
scheduling it immediately will utilize unused re�
sources� so it is good�

� however� if this job runs for a long time� and will
block other jobs in the future� it may lead to
more future loss than current gain� So maybe it
should be left aside�

Consider the following simple case as an example
�Fig� �
� a ����node system is currently running a ���
node job� and there are a ���node job and a ����node
job in the queue� The question is� should the ���node
job be scheduled to run concurrently with the ���node
job� Two outcomes are possible� If the ���node job
is scheduled and it terminates before the ���node job�
resource utilization is improved from ��� possibly up
to ���� But if the ���node job terminates soon after
the ���node job is scheduled� and the ���node job
runs for a long time� the utilization drops from ���
to ���� And� in order not to starve the ����node job�
it might be necessary to just let the ���node job run
to completion� and settle for ��� utilization�
As the future is usually unknown� there is no solu�

tion to this dilemma� and any decision may lead to
fragmentation� Thus using variable partitioning may
lead to signi�cant loss of computing power 	��� ��
�

either because jobs do not �t together� or because
processors are intentionally left idle in anticipation
of future arrivals 	��
�

The most common solution is to reorder the jobs in
the queue so as to pack them more tightly 	��
� One
promising approach is to allow small jobs to move
forward in the queue if they can be scheduled imme�
diately� However� this may cause starvation of large
jobs� so it is typically combined with allowing large
jobs to make reservations of processors for some fu�
ture time� Only short jobs are then allowed to move
ahead in the queue �Fig� �
 	�� ��
�

The problem with this idea is that it requires infor�
mation about job runtimes� A rough approximation
may be obtained from the queue time limit �in most
systems users may choose which queue to use� the
di�erence being that each queue has a distinct set of
resource limits associated with it
� The idea is that
the user would choose the queue that best represents
the application�s needs� and the system would then
be able to select jobs from the di�erent queues to
create a job mix that uses the system�s resources ef�
fectively 	��
� However� experience indicates that this
information is unreliable� as shown by the distribu�
tions of queue�time utilization in Fig� �� The graphs
show that users tend to be extremely sloppy in select�
ing the queue� thus undermining the whole scheme�
�The graphs show the distributions in buckets of �
percentage points� Thus the top left data point in
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Figure �� Job runtimes as a fraction of the batch queue time limit� showing that most jobs use only a
fraction of the time limit� even for queues with very long limits� The plot for each queue limit is normalized
independently�

the left graph shows that about ��� of the jobs sub�
mitted to all the ��hour queues on the Cornell SP�
only used between � and �� of their time limit� i�e�
they were actually shorter than � minutes�

Another solution to the fragmentation problem is

to use adaptive partitioning rather than variable par�
titioning 	��� ��� ��
� The idea here is that the num�
ber of processors used is a compromise between the
user�s request and what the system can provide� Thus
the system can take the current load into account�

and reduce the partition sizes under high load con�
ditions� However� this scheme also requires a change
of user interfaces� albeit much less disruptive than
dynamic partitioning�
The prefered solution is to use gang scheduling

	��� �� �� ��
� With gang scheduling� jobs receive the
number of processors requested� but only for a lim�
ited time quantum� Then a �multi�context�switch� is
performed on all the processors at once� and another
job �or set of jobs
 is scheduled instead� Thus all
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Figure �� Example of how the �exibility a�orded by time slicing can increase system utilization� compare
with Fig� ��

jobs can execute concurrently using time slicing� as in
conventional uniprocessors� As a result� a scheduling
decision only impacts the scheduling slot to which it
pertains� other slots are available to handle other jobs
and future arrivals� this adds �exibility and boosts
performance�

Returning to the example considered earlier� the
situation with gang scheduling is illustrated in Fig�
�� The ���node job can safely run in the same time�
slot with the ���node job� while the ����node job gets
a separate time�slot� There is no danger of starva�
tion� As long as all three jobs are active� the utiliza�
tion is ������ Even if the ���node job terminates�
leaving the ���node job to run alone in its time�slot�
the utilization is ������ Naturally� a few percentage
points should be shaved o� these �gures to account
for context�switching overhead� Nevertheless� this is
a unique case where time�slicing� despite its added
overhead� can lead to better resource utilization than
batch scheduling�

Using gang scheduling not only improves utiliza�
tion � it also reduces mean response time� It is well
known that mean response time is reduced by the
shortest�job��rst discipline� In workloads with high
variability this is approximated by time slicing� be�
cause chances are that a new job will have a short
runtime 	��� ��
� As production workloads do in�
deed exhibit a high variability 	�
� it follows that gang

scheduling will reduce mean response time� Indeed�
gang scheduling has even been advocated in conjunc�
tion with dynamic partitioning 	��
�

� Simulation Results

��� The Compared Scheduling
Schemes

In order to demonstrate the ideas described above�
we simulate the performance of a multicomputer sub�
jected to a realistic workload and using one of a set
of di�erent scheduling schemes� these are�

FCFS� the base case we use for comparison is
variable partitioning with �rst�come��rst�serve
queuing� This scheme is expected to su�er from
signi�cant fragmentation�

Back�ll� back�lling was developed for the Argonne
National Lab SP� machine 	��
� and has recently
also been installed on the Cornell SP� and other
machines� It allows short jobs to move forward in
the queue provided they do not cause delays for
any other job� Only jobs that do not cause delay
are moved forward� We assume the scheduler has
perfect information when making such decisions�
i�e� it knows the exact runtimes of all the jobs in
the queue�
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Figure �� Statistical properties of the workload model� 	a
 distribution of job sizes 	b
 distribution of
runlengths 	number of repeated executions
 	c
 correlation of runtime with job size� for all sizes and when
jobs are grouped into four buckets according to size 	d
 cumulative distributions of runtimes for the jobs in
the four buckets�

Prime� this policy is a simpli�ed version of a policy
used on the SP� machine at NASA Ames 	��
�
The idea is to distinguish between prime time
and non�prime time�� during prime time� large
jobs �more than �� nodes
 are restricted to ��
minutes� while small jobs are allowed up to �
hours provided at least �� nodes are available�
Thus� if only a few nodes are available� all jobs
are restricted to �� minutes� and responsiveness
for short jobs is improved� This achieves a simi�
lar e�ect to setting aside a pool of nodes for in�
teractive jobs 	��
� During non�prime time these

�Our workload model does not include a daily cycle of job

submittals � it is a continuous stream of jobs with the same

statistical properties� Thus in our simulations the distinction

is only in the scheduling policy� which is switched every ��

hours�

restrictions are removed� Again� we assume the
scheduler knows the runtimes of all jobs�

Gang� gang scheduling with no information regard�
ing runtimes� The jobs are packed into slots
using the buddy scheme� including alternate
scheduling 	�
� Two versions with di�erent
scheduling time quanta are compared� one has
relatively small time quantum of �� seconds� so
most jobs e�ectively run immediately� and the
other has a time quantum of �� minutes ����
seconds
� so jobs may be queued for a certain
time before getting to run�

��� Simulation Methodology

The workload model is an improved version of the
model used in 	�
� It is based on workload analysis
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Figure �� Simulation results�

from a number of production systems 	�� ��� ��
� and
is characterized as follows �Fig� �
�

� The distribution of job sizes emphasizes small
jobs and powers of two�

� The distribution of runtimes is a three�stage hy�
perexponential� where the relative weights of the
three stages depend on the job size� This depen�
dence is used to create a correlation between the
job size and the runtime�

� The arrivals are Poisson� except for jobs that are
re�run a number of times� in which case they are
re�submitted immediately upon completion�

The simulation uses the batch means method to
evaluate con�dence intervals� Each batch includes
���� job terminations� The �rst batch was discarded
to account for simulationwarmup� The length of each
experiment �i�e� the simulation for each data point in
the results
 is at least � batches� or more as required
so that the ��� con�dence interval is no larger than
��� of the data point value� up to a maximum of
��� batches� Interestingly� simulations of all schedul�
ing schemes except gang scheduling with short time
quanta used all ��� batches� without a signi�cant re�
ductions in the con�dence interval� it was typically
in the range of ������ of the data point value� This
re�ects the very high variance present in the work�
load�

The sequence of job arrivals is generated once and
reused for each data point and each scheme� Only the
mean interarrival time is changed to create di�erent
load conditions�

The performance metric is the average slowdown�
The slowdown for a given job is de�ned as the ratio
between its response time on a loaded system �i�e� its
queuing time plus run time and possible preempted
time
 and its runtime on a dedicated system�

��� Experimental Results

The results are shown in Fig� �� As expected� FCFS
saturates at extremely low loads� and even before
saturation it tends to create very high slowdowns�
Back�lling and delaying large jobs to non�prime time
are both much better� but back�lling can sustain a
higher load and produces lower slowdowns� Attempts
to improve the performance of the prime�non�prime
policy by �ddling with its parameters �the threshold
between small and large jobs� and the length of the
prime shift
 showed that it is relatively insensitive
to the exact values of these parameters� However� it
should be remembered that our workloadmodel is not
suitable for a detailed study of the prime�non�prime
policy� because it does not include a daily cycle�

Gang scheduling� even with relatively long quanta
of �� minutes� takes the cake� the slowdowns are very
low� and saturation is delayed until system load ap�
proaches �� This agrees with the informal arguments
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Figure �� The place of the gang scheduler in the Cray T�D scheduling system�

presented in Section �� While our simulations may
be criticized for not modeling the overheads involved
in gang scheduling � for example� the overhead of
context switching and the e�ect of corrupting cache
state � we feel that with long enough time quanta
these overheads can be kept relatively low� so the
main results remain valid�

� Experience with Gang

Scheduling on the Cray T�D

The default mode of operation for the Cray T�D is
that of variable partitioning� Generally� jobs are al�
located a partition of processors as soon as a suitable
set becomes available� In the case where a job has
waited for longer than some con�gurable period of
time� the initiation of all other jobs is deferred un�
til it begins execution� The partitions are held until
the job completes and relinquishes them� e�ectively
locking out any other use for those processors� With
such a processor allocation mechanism� the computa�
tional requirements of long�running production jobs
directly con�ict with those of interactive code devel�
opment work�

Our goals in the development of the Gang Sched�
uler for the Cray T�D were�

� Provide better response for interactive jobs that
are submitted directly

� Provide better throughput for batch jobs that
are submitted through NQS

� Permit larger jobs to be executed
� Provide optimum throughput for speci�c jobs� as
designated by management

While achieving all of these objectives would seem
impossible� our initial utilization rate of ����� pro�
vided us a great deal of room for improvement�

In a nutshell� our approach is as follows �Fig� �
�
Originally� batch jobs were submitted via NQS and
interactive jobs were submitted directly to the Cray
system software� NQS bu�ered the jobs� and for�
warded only few small jobs during the day� so that
�hopefully
 su�cient processors would be left free
for interactive use� At night� NQS would submit
enough jobs to �ll the whole machine� With the gang
scheduler� NQS �lls the machine during the day and
over�subscribes it during the night� The gang sched�
uler preempts jobs as necessary in order to provide
timely service to higher�priority jobs� notably inter�
active jobs� This is a �lazy� form of gang schedul�
ing� rather than performing a context switch across
the whole machine at given intervals� speci�c jobs are
chosen for preemption when an urgent need for pro�
cessors arises�

Gang scheduling thus e�ectively creates a larger
virtual machine� and meets the above objectives by�

� Time sharing processors for interactive jobs

�



when experiencing an extremely heavy interac�
tive workload

� Keeping processors fully utilized with batch jobs
until preempted by an interactive or other high
priority job

� Making processors available in a timely fashion
for large jobs

� Making processors available in a timely fash�
ion for speci�c jobs and making those jobs non�
preemptable

Some might argue that interactive computing with
a massively parallel computer is unreasonable� but
interactive computing accounts for a substantial por�
tion of our workload and is used for code development
and rapid throughput� Interactive jobs currently ac�
count for ��� of all jobs executed and ��� of all CPU
cycles used in our environment� A single interactive
job can be allocated up to ��� of all processors and
memory� The aggregate of all interactive work will
normally consume between zero and ���� of all pro�
cessors and memory in our environment� While the
Cray T�D is well suited for addressing the execution
of grand challenge problems� we wanted to expand its
range of functionality into general purpose support of
interactive work as well�

��� Cray T�D Design Issues

The Cray T�D is a massively parallel computer in�
corporating DEC alpha ����� microprocessors� capa�
ble of ��� MFLOPS peak performance� Each pro�
cessor has its own local memory� The system is
con�gured into nodes� consisting of two processors
with their local memory and a network interconnect�
The nodes are connected by a bidirectional three�
dimensional torus communications network� There
are also four synchronization circuits �barrier wires

connected to all processors in a tree shaped struc�
ture� The system at Lawrence Livermore National
Laboratory �LLNL
 has ��� processors� each with ��
megabytes of DRAM�Disk storage is required to store
the job state information for preempted jobs� This
can be either shared or private storage space� We
have created a shared �� gigabyte �le system for this
purpose� The storage requirements will depend upon
the T�D con�guration and the amount of resource
oversubscription permitted�
Without getting into great detail� the T�D severely

constrains processor and barrier wire assignments to
jobs� Jobs must be allocated a processor count which

is a power of two� with a minimum of two processors
�one node
� The processors allocated to a job must
have a speci�c shape with speci�c dimensions for a
given problem size� For example� an allocation of
�� processors must be made with a contiguous block
with � processors in the X direction� � processors in
the Y direction and � processors in the Z direction�
Furthermore� the possible locations of the processors
assignments is restricted� These very speci�c shapes
and locations for processor assignments are the result
of the barrier wire structure� Jobs must be allocated
one of the four barrier wires when initiated� The
barrier wire assigned to a job cannot change if the
job is relocated and� under some circumstances� two
jobs sharing a single barrier wire may not be located
adjacent to each other� The number of processors
assigned to a job can not change during execution
	�
�

There are two fundamentally di�erent ways of pro�
viding for timesharing of processors� The entire state
of a job� including memory contents� register contents
and switch state information can be written to disk�
Alternately� the register and switch state information
can be saved and the memory shared through pag�
ing� Saving the entire job state clearly makes context
switches very time consuming� however� it can pro�
vide a means of relocating jobs to di�erent processors
and provide a means of preserving executing jobs over
computer restarts� Sharing memory through paging
can make for much faster context switches� Our sys�
tem provides timesharing by saving the entire state
of a job to disk� Cray does not support paging on this
architecture because of the large working sets typical
of programs executed and in order to reduce system
complexity�

Timesharing by saving the entire state of a job to
disk has an additional advantage as well� Given the
T�D�s constraints on processor assignment� the abil�
ity to relocate jobs with this mechanism clearly make
it preferable� While the ability to preserve execut�
ing jobs over computer restarts has proven to be of
some use� most programs complete in a few hours and
can be restarted without substantial impact upon the
system� Unfortunately� the high context switch time
provides lower interactivity than would be desirable�
It should also be noted that the system only supports
the movement of a job�s state in it�s entirety� It is not
possible to initiate state transfers on a processor by
processor basis� although that capability would im�
prove the context switch time�
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Wait Do�not�disturb Processor
Job Class Priority Time Time Multiplier Limit
Interactive � � Sec �� Sec ���
Debug � ��� Sec � Year ��
Production � � Hour �� Sec ���
Benchmark � � Year � Year ��
Standby � � Year � Sec ���

Table �� Scheduling parameters for di�erent job classes�

The original version of this Gang Scheduler was de�
veloped for the BBN TC���� computer� The BBN
computer permitted programs to be assigned pro�
cessors without locality constraints� Its timesharing
through shared memory and paging was successful at
providing both excellent interactivity and utilization
	��� ��
�

��� Policy Overview

The T�D Gang Scheduler allocates processors and
barrier circuits for all programs� In order to satisfy
the diverse computational requirements of our clients�
the programs are classi�ed by access requirements�

� Interactive class jobs require responsive service
� Debug class jobs require responsive service and
can not be preempted

� Production class jobs require good throughput
� Benchmark class jobs can not be preempted
� Standby class jobs have low priority and are suit�
able for absorbing otherwise idle compute re�
sources

There are several class�dependent scheduling pa�
rameters to achieve the desired performance charac�
teristics�

� Priority� Job classes are prioritized for service�
We make interactive jobs higher priority than
production jobs during the daytime and assign
them equal priority at night�

� Wait time� The maximumtime that a job should
wait before �or between
 processor access� This
is used to ensure timely responsiveness� espe�
cially for interactive and debug class jobs� After
a job has waited to be loaded for the maximum
wait time� an attempt will be made to reserve a
block of processors for it� This processor reser�
vation mechanism frequently preempts multiple
small jobs to prevent starvation of large jobs�

� Do�not�disturb time multiplier� This parameter
is multiplied by the number of processors to ar�
rive at the do�not�disturb time� the minimum
processor allocation time before preemption� A
job will never be preempted before its do�not�
disturb time is up� This allows the desire for
timely response to be balanced against the cost
of moving a job�s state onto disk and back to
memory �it is similar to the scheme proposed
for the Tera MTA 	�

� The do�not�disturb time
multiplier should be set to a value substantially
larger than the time required to move a job�s
state in one processor from memory to disk and
back to memory� This time will vary with the
disk con�guration� On the LLNL T�D with ���
processors and �� megabytes of memory each�
the entire torus or processors can be repacked in
about eight minutes or one second per processor�

� Processor limit� The maximum number of pro�
cessors which can be allocated to jobs of this
class� This is used to restrict the number of pro�
cessors allocated to non�preemptable jobs during
the daytime�

The scheduling parameters currently being used
during the daytime on weekdays are shown in Ta�
ble �� The time of one year is used in several cases to
insure no preemption or an inde�nite wait for some
job classes�
Several non�class dependent scheduling parameters

also exist to regulate computer�wide resource use�

� Large job size� The minimum number of proces�
sors requested by a job for it to be considered
�large�� We set this to �� during daytime�

� Large processor limit� The maximumnumber of
processors which can be allocated to �large� jobs
at any time Since �large� jobs can take a signif�
icant period of time to have their state moved
between memory and disk� interactivity can be
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improved by restricting the number of proces�
sors allocated to them� Our limit is ��� during
daytime�

� Job processor limit� The maximum number of
processors which can be allocated to any single
job� We use ���� i�e� we do not place such a limit�

� System processor limit� The maximum num�
ber of processors used by jobs either running or
swapped to disk� This de�nes the degree of over�
allocation� we use ���� i�e� an overallocation fac�
tor of ����� A limit is required to avoid �lling the
�le system used for job state information� We
are conservative in our allocation of this storage
area because it is shared� Jobs will be queued�
but not initiated to avoid exceeding this parame�
ter� If an attempt is made to preempt a job when
insu�cient storage is available� that job will con�
tinue execution and no further attempts will be
made to preempt it�

��� Job Scheduling Algorithm

We have implemented a two pass scheduling algo�
rithm� The �rst pass checks for jobs which have
waited for loading longer than their job class� max�
imum wait time� These jobs are viewed as having
a high priority for loading and special measures are
taken for loading them� If there is more than one such
job� a list of these jobs is constructed then sorted by
job class priority and within each priority value by the
time waiting for loading� Each of these jobs is con�
sidered for loading in the sorted order� The processor
requirement for the job will be compared against the
scheduler�s job processor limit� If the job�s processor
request cannot be satis�ed� that job will no longer be
considered a candidate for loading�

Multiple possible processor assignments for the job
are considered� For each possible processor assign�
ment� a cost is computed� The cost considers the
number of nodes occupied by the potentially pre�
empted jobs� their relative priority� and how much
time remains in their do�not�disturb time� In no case
will a job be preempted for another job of a lower
priority class� Jobs of benchmark and debug class
will never be preempted� If no possible processor as�
signment for loading the waiting job is located� its
loading will be deferred� If a possible processor as�
signment is located� the lowest cost set of processors
will be reserved for the exclusive use of this waiting
job and jobs occupying those processors will be pre�

empted when their do�not�disturb times have been
exhausted�

Only one job will will have processors reserved for
it at any point in time� Once a set of processors
have been reserved for a waiting job� the reservation
of processors for other waiting jobs will be deferred
until the selected job has been loaded� An exception
is made only in the case that a higher priority class
job exceeds its maximumwait time� For example� an
interactive class job could preempt the reservation of
processors for a production class job� The job with
reserved processors can be loaded into other proces�
sors if another compatible set of processors becomes
available at an earlier time� As soon as that job is
loaded� the reserved processors are made generally
available� This mechanism insures timely interactiv�
ity and prevents the starvation of large jobs�

In the second scheduler pass� other executable jobs
are recorded in a list sorted by job class priority and
within each priority by the time waiting for loading�
Each job in the sorted list is considered for proces�
sor assignment� First the limits �job processor limit�
large job limit� and job class limit
 are checked to
determine if the job should be allocated processors�
Any job satisfying these limits will have its barrier
wire circuit and processor requirements considered�
If the job can have its requirements met either with
unallocated resources or resources which can be made
available by preempting jobs which have exceeded
their do�not�disturb time� it will have a barrier wire
circuit and processors assigned� If a speci�c barrier
wire is not requested� one of those available will be
assigned� All four barrier wire circuits are considered
for use and selected on the basis of lowest contention�
More e�cient relocation of jobs can be achieved by
using all four barrier wire circuits�

The time required to save the state of a job on
disk can be up to four minutes� Given this delay�
it is not ideal to queue the loading of a job until
the processors assigned to it are actually available�
Whenever processors are actually made available� the
job scheduler is executed again� This insures that
when processors become available� they are assigned
to the most appropriate jobs then available�

When a newly started job can immediately begin
execution in a variety of possible sets of processor� a
best��t algorithm is used to make the selection� We
also try to locate debug and benchmark class jobs�
which can not be preempted� together in order to
avoid blocking large jobs�
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Figure �� Sample gangster display� The W �eld shows the barrier wire used� The MM�SS �eld shows the
total execution time� The ST �eld shows the job�s state� i 
 swapping in� N 
 new job� not yet assigned
nodes or barrier wire� o 
 swapping out� O 
 swapped out� R 
 running� S 
 suspended� W 
 waiting job�
assigned nodes and barrier wire�

��� Client Interface

The default mode of operation for the Cray T�D re�
quires all jobs� batch and interactive� to be initiated
through a program called mppexec� which will ac�
cept as arguments the number of processors required�
speci�c processor requirements� speci�c barrier wire
requirements� etc� The Gang Scheduler takes advan�
tage of this feature by creating a wrapper for mppexec
which is upwardly compatible with it� The interface
registers the job with the Gang Scheduler and waits
for an assignment of processors and barrier circuit be�
fore continuing� On a heavily utilized computer� this
typically takes a matter of seconds for small numbers
of processors and possibly much longer for large jobs�
The only additional argument to the Gang Scheduler
interface is the job class� which is optional� By de�
fault� interactive jobs are assigned to the interactive
job class� the Totalview debugger jobs are assigned
to the debug class� and batch jobs are assigned to the
production job class�

��� The Gangster Tool

We provide users with an interactive tool� called
�gangster�� for observing the state of the system and

controlling some aspects of their jobs� Gangster com�
municates with the Gang Scheduler to determine the
state of the machine�s processors and individual jobs�
Gangster�s three�dimensional node map displays the
status of each node �each node consists of two pro�
cessing elements on the T�D
� Gangster�s job sum�
mary reports the state of each job� including jobs
moving between processors and disk� Users can use
gangster to change the class of their own jobs or to ex�
plicitly move their job�s state to disk �suspending ex�
ecution
 or make it available for execution �resume
�

A sample gangster display is shown in Fig� �� This
display identi�es jobs in the system and assigned pro�
cessors� The node map is on the left� A dot or letter
denotes each node �two processing elements on the
T�D
� a dot indicates the node is not in use� a let�
ter designates the job currently occupying that node�
On the right is a summary of all jobs� Node number
��� is in the upper left corner of the lowest plane�
The X axis extends downward within a plane� The
Y axis extends up� with one Y value in each plane�
The Z axis extends to the right� This orientation was
selected for ease of display for a ��� processor T�D
con�guration�
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Global limits� User Run Aggregate
Period Limit Limit mpp�pe�limit

����� � ����� � � � � � �� ��� � ���
����� � ����� � � � � � �� �� � ���
����� � ����� � � � � � �� �� � ��������

����� � ����� � � � � � �� ��� � ���

Queue limits�
Job Job

Queue User Run Time Processor Aggregate
Name Limit Limit Limit Limit mpp�pe�limit
pe�� �� � �� � � h� � h ��� �� ���� ���
pe�� �� � �� ���� � h� � h ��� �� ���� ��������

pe�� long �� � �� � �� h� �� h ��� ��� ��� �������

pe��� short �� � �� � �� m� �� m ���� �� ���� ���
pe��� �� ���� �� � � h� � h ���� ��� ���� ������

pe��� short �� ���� �� � �� m� �� m ���� ��� ���� ������

pe��� �� ���� �� � � h� � h ���� ��� ���� ������
�Varies by time of day and�or day of week

Table �� Changes made in NQS con�guration parameters when the Gang Scheduler was introduced� User
Limit is the maximum number of batch jobs a single user may have executing� Run Limit is the maximum
number of batch jobs 	from a certain queue
 the system may have executing at one time� mpp�pe�limit is
the maximum number of processors which the batch jobs may have allocate at one time�

��� NQS Con�guration

Jobs may be submitted to the Cray T�D interactively
or via the NQS batch queuing system� Interactive
jobs are limited to �� processors and � hours� Prior
to installation of the Gang Scheduler� our NQS batch
system was con�gured to leave an adequate number of
processors available for interactive computing during
the day� This was changed when the Gang Scheduler
was introduced� and now NQS fully subscribes the
machine during the day� At night� it oversubscribes
the machine by as much as ���� �Table �
�

Note that jobs requiring more than a four hour
time limit were originally limited to �� processors�
Also note that substantial compute resources were
sacri�ced in order to insure processors for interactive
computing� This was particularly noticeable in the
early morning hours as the mpp�pe�limit dropped to
�� at ����� in order to insure the availability of ���
processors for interactive use at ������ Frequently
this left many processors idle� Even so� under the oc�
casionally heavy interactive workload� all processors
would be allocated and interactive jobs experienced
lengthy initiation delays�

With the gang scheduler� NQS is now allowed to
fully subscribes the computer and oversubscribe at

night� The overallocation of processors permits the
execution of larger jobs and makes more jobs available
for fully packing the T�D�s torus of processors� NQS
jobs now relinquish their processors only as needed�
not in anticipation of interactive work� During peri�
ods of heavy use� this improves our realized through�
put substantially while preserving good interactivity�
While average interactivity has decreased slightly due
to interference from NQS jobs� the worse case startup
time has dropped from tens of minutes to about one
minute� This is still quite acceptable to our user com�
munity� especially when accompanied by a substan�
tial increase in realized batch throughput� We also
see a few jobs relocated to better utilize the avail�
able processors during periods of heavy use� especially
when jobs requiring �� or ��� processors exist�

��	 Performance Results

In order to quantify the e�ect upon system through�
put and interactivity under heavy load� we have
continuously tabulate system performance with the
Gang Scheduler� Before installing the Gang Sched�
uler� we did the same for the standard UNICOS MAX
scheduler and the Distributed Job Manager �DJM
�
DJM is a gang scheduler developed by the Minnesota
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Figure �� Changes in workload distribution due to use of the Gang Scheduler�
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Figure ��� Weekly utilization with the three schedulers� Dashed lines and numbers denote averages�

Supercomputer Center� which has undergone sub�
stantial modi�cation for performance enhancements
by Cray analysts at LLNL� All of the DJM code to ac�
complish job swapping is new� The enhanced version
of DJM was used for testing purposes�

Fig� � demonstrates the Gang Scheduler�s ability to
execute large jobs� note the dramatic improvement
in throughput of ��� and ��� processor jobs� This
charts the distribution of resources allocated to each
job size as percentage of CPU resources actually de�
livered to customers� The percentage of gross CPU
resources which are delivered to large jobs has in�

creased by an even wider margin� The January ����
period is the last full month of operation with the
standard UNICOS MAX operating system� April is
just after installation of the Gang Scheduler� and by
October the workload had shifted to take advantage
of its improved support for large jobs�
The best measure of success is probably actual

throughput achieved� While utilization is quite low
on weekends� the improvement in throughput at other
times has dramatically improved with preemptive
schedulers�� Fig� �� summarizes utilization of proces�

�While DJM would also have provided for good interactiv�
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Figure ��� Histograms of slowdown and bounded slowdown of interactive jobs�

sor resources over the course of several entire weeks�
Over the longer term� utilization has improved even
more dramatically while providing good interactivity�
as shown in Fig� ��� CPU utilization reported is the
percentage of all CPU cycles available which are de�
livered to customer computation� Weekly utilization
rates have reached over ����

Even though the improved utilization is impressive�
this should not come at the expense of interactive

ity and throughput� it became available at the same time as our

Gang Scheduler was completed and we felt that continued de�

velopment of our Gang Scheduler was worthwhile� In addition�

our Gang Scheduler provided the means to arbitrarily lock jobs

into processors� This was important for us to be able to insure

optimal throughput for jobs speci�ed by our management�

jobs� To quantify this� we tabulated the slowdowns
of interactive jobs� i�e� the ratio of the time they spent
in the system to the time they actually ran� This was
done for the period of July �� through August ���
During this period� ���� interactive jobs were run�
using a total of ���� million node�seconds� and ����
batch jobs were run� using a total of ����� million
node�seconds�

The ratio of the total time all interactive jobs spent
in the system to their total runtimes was ����� lead�
ing one to assume only ��� overhead� However� this
is misleading� because slowdowns of individual jobs
should be checked� The full distribution of slowdowns
is plotted in Fig� ��� Actually� only the low part of
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Figure ��� Likelihood of preemption for di�erent job sizes�

the distribution is shown� as it has a very long tail�
but most jobs have rather low slowdowns� The most
extreme case was a one�second job that was delayed
for just less than �� minutes� leading to a slowdown
of ����� The average slowdown was determined to be
�����

While the high average slowdown is disappointing�
it too is misleading� The problem is that many in�
teractive jobs have very short runtimes� so a high
slowdown may not be indicative of a real problem�
Indeed� merely loading the application fromdisk typi�
cally takes about ��� seconds per processor used� thus
a one second job running on � nodes will require two
seconds of load time� for an optimal slowdown of ��
which is actually quite reasonable in this case� In or�
der to counter the e�ect of short jobs� we also plot the
bounded slowdown 	��
� For long running jobs� this is
the same as the slowdown� But for short jobs� the
denominator is taken as the �interactivity threshold�
rather than as the actual �very short
 runtime� In
processing the data for Fig� ��� we used a threshold
of �� seconds� the average bounded slowdown is then
����� and the tail of the distribution is also shorter�

��
 Operational Characteristics

Figs� �� to �� portray the gang scheduler in operation�
These �gures are based on detailed logs of all jobs and

all job preemptions during four months of production
use� from June ���� through September �����

It should be noted that only ���� of jobs that
completed normally were ever preempted� Fig� ��
shows the likelihood of preemption as a function of
the job size� and shows that di�erent size jobs were
preempted in roughly equal proportions� While most
jobs were not preempted or were only preempted a
small number of times� the maximal number of pre�
emptions observed was pretty high� one job was pre�
empted �� times before completing� The histogram
of number of preemptions is shown in Fig� ���

Finally� we take a look at the average length of the
time quanta for the di�erent sizes� This is shown in
Fig� ��� once for jobs that were actually preempted�
and again for all jobs �i�e� including those that ran to
completion without being preempted even once
� As
expected� use of the do�not�disturb time multiplier
leads to larger average time quanta for larger jobs�
�The ����processor �gure is a special case of only one
job� Jobs of this size are normally not preempted�


��� Future Development

While the Gang Scheduler manages the currently ac�
tive jobs well� the NQS batch system selects the jobs
to be started� It would be desirable to integrate the
Gang Scheduler with NQS in order to more e�ciently
schedule all available jobs� Work is also planned for
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Figure ��� Average time quanta for di�erent size jobs�

the gang scheduling of jobs across a heterogeneous
collection of computers�

� Conclusions

Gang scheduling has often been advocated based on
its advantages of

� presenting jobs with an environment similar to
that of a dedicated machine� thus allowing �ne

grain interactions based on user�level communi�
cation and busy waiting 	�
�

� allowing jobs with extreme requirements to share
the system� a job that requires all the nodes does
not have to wait for all previous jobs to termi�
nate� nor does it delay subsequent jobs�

� support for interactive work by using time slic�
ing� which guarantees a reasonable response time
for short jobs� and

��



� not placing any restrictions or requirements on
the model of computation and programming
style�

However� many researchers have expressed the fear
that using gang scheduling would lead to unaccept�
able system performance due to the overheads in�
volved in context switching and the loss of resources
to fragmentation�
In contrast� we have shown that gang scheduling

can improve system performance signi�cantly relative
to static space slicing policies often used in practice
on parallel supercomputers� Gang scheduling adds
�exibility to resource allocations� and reduces the im�
pact of bad decisions� This contributes directly to
a reduction in fragmentation� and more than o�sets
the cost of overheads� Indeed� experience with us�
ing gang scheduling for a production workload on the
Cray T�D at Lawrence Livermore National Lab has
shown a dramatic increase in system utilization�
The main obstacle to widespread use of gang

scheduling is memory pressure� If gang scheduling
is performed at a �ne granularity� all jobs need to be
memory resident at the same time� so each has less
memory available� The alternative is to swap jobs
to disk when they are preempted� and swap them
in again when scheduled� This is a viable approach�
but it requires su�cient resources to be invested in
adequate I�O facilities� The combination of demand
paging and prefetching with gang scheduling remains
an interesting topic for future research�
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